Mutation of zebrafish dihydrolipoamide branched-chain transacylase E2 results in motor dysfunction and models maple syrup urine disease

نویسندگان

  • Timo Friedrich
  • Aaron M. Lambert
  • Mark A. Masino
  • Gerald B. Downes
چکیده

Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt), a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD), a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early diagnosis of maple syrup urine disease using polymerase chain reaction-based mutation detection.

BACKGROUND Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by defective activity of the branched-chain alpha-ketoacid dehydrogenase enzyme complex. Early diagnosis and management of MSUD are imperative for preventing permanent neurological impairments. In the Philippines, a 4.7 kb deletion in the dihydrolipoamide branched-chain transacylase E2 (DBT) gene has been comm...

متن کامل

A Classic Case of Maple Syrup Urine Disease and a Novel Mutation in the BCKDHA Gene

Background: Maple syrup urine disease (MSUD) is an inherited branched-chain amino acid metabolic disorder caused by the deficiency in the branched-chain alpha-keto acid dehydrogenase (BCKD) complex. In MSUD, elevation of the branched-chain amino acids, such as alpha-keto acid and alpha-hydroxy acid, occurs due to the BCKDC gene deficiency, appearing in the blood, urine, and cerebrospinal fluid,...

متن کامل

E2 transacylase-deficient (type II) maple syrup urine disease. Aberrant splicing of E2 mRNA caused by internal intronic deletions and association with thiamine-responsive phenotype.

Maple syrup urine disease (MSUD) or branched-chain alpha-ketoaciduria is an autosomally inherited disorder in the catabolism of branched-chain amino acids leucine, isoleucine, and valine. The disease is characterized by severe ketoacidosis, mental retardation, and neurological impairments. MSUD can be classified into genetic subtypes according to the genes of the branched-chain alpha-ketoacid d...

متن کامل

Branched-Chain Amino Acids: Metabolism, Physiological Function, and Application Lessons from Genetic Disorders of Branched-Chain Amino Acid Metabolism

Genetic disorders of BCAA metabolism produce amino acidopathies and various forms of organic aciduria with severe clinical consequences. A metabolic block in the oxidative decarboxylation of BCAA caused by mutations in the mitochondrial branched-chain a-keto acid dehydrogenase complex (BCKDC) results in Maple Syrup Urine Disease (MSUD) or branched-chain ketoaciduria. There are presently five kn...

متن کامل

Lessons from genetic disorders of branched-chain amino acid metabolism.

Genetic disorders of BCAA metabolism produce amino acidopathies and various forms of organic aciduria with severe clinical consequences. A metabolic block in the oxidative decarboxylation of BCAA caused by mutations in the mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC) results in Maple Syrup Urine Disease (MSUD) or branched-chain ketoaciduria. There are presently fiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012